Multi-scale Dense Networks for Resource Efficient Image Classification

نویسندگان

  • Gao Huang
  • Danlu Chen
  • Tianhong Li
  • Felix Wu
چکیده

In this paper we investigate image classification with computational resource limits at test time. Two such settings are: 1. anytime classification, where the network’s prediction for a test example is progressively updated, facilitating the output of a prediction at any time; and 2. budgeted batch classification, where a fixed amount of computation is available to classify a set of examples that can be spent unevenly across “easier” and “harder” inputs. In contrast to most prior work, such as the popular Viola and Jones algorithm, our approach is based on convolutional neural networks. We train multiple classifiers with varying resource demands, which we adaptively apply during test time. To maximally re-use computation between the classifiers, we incorporate them as early-exits into a single deep convolutional neural network and inter-connect them with dense connectivity. To facilitate high quality classification early on, we use a two-dimensional multi-scale network architecture that maintains coarse and fine level features all-throughout the network. Experiments on three image-classification tasks demonstrate that our framework substantially improves the existing state-of-the-art in both settings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Classification of Urban Features Based on Integration of Structural and Spectral Information from UAV Imagery

Three-dimensional classification of urban features is one of the important tools for urban management and the basis of many analyzes in photogrammetry and remote sensing. Therefore, it is applied in many applications such as planning, urban management and disaster management. In this study, dense point clouds extracted from dense image matching is applied for classification in urban areas. Appl...

متن کامل

Multi-Scale Dense Convolutional Networks for Efficient Prediction

We introduce a new convolutional neural network architecture with the ability to adapt dynamically to computational resource limits at test time. Our network architecture uses progressively growing multi-scale convolutions and dense connectivity, which allows for the training of multiple classifiers at intermediate layers of the network. We evaluate our approach in two settings: (1) anytime cla...

متن کامل

Multi-Scale Context Aggregation by Dilated Convolutions

State-of-the-art models for semantic segmentation are based on adaptations of convolutional networks that had originally been designed for image classification. However, dense prediction and image classification are structurally different. In this work, we develop a new convolutional network module that is specifically designed for dense prediction. The presented module uses dilated convolution...

متن کامل

Identification of Houseplants Using Neuro-vision Based Multi-stage Classification System

In this paper, we present a machine vision system that was developed on the basis of neural networks to identify twelve houseplants. Image processing system was used to extract 41 features of color, texture and shape from the images taken from front and back of the leaves. The features were fed into the neural network system as the recognition criteria and inputs. Multilayer perceptron (MLP) ne...

متن کامل

SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS

This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018